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This paper is devoted to the calculation of effective elastic properties of a 
medium containing a random field of ellipsoidal inhomogeneities. It is assumed 
that the centers of the inclusions (the inhomogeneities) form a random spatial 
lattice, i.e., the field of inhomogeneities considered is strongly correlated. 
The interaction between the inhomogeneities is taken into account within the frame- 
work of the self-consistent field approximation. It hence turns out that the sym- 
metry of the tensor of the elastic properties of the medium is determined by the 
symmetry of the elastic properties of the inclusion matrix, as well as by the sym- 
metry of the spatial lattice formed by the mathematical expectations of the centers 
of the inclusions. 

The construction of a tensor of the effective elastic properties of a medium containing 
a random field of inhomogeneities is related to the solution of the problem about the in- 
teraction of many particles. The self-consistent field method is one of the widespread 
methods of solving such problems. A whole series of papers can be mentioned in which this 
method was used to determine the effective properties of different inhomogeneous media: 
polycrystalline [I, 2], composite [3], and in problems about wave propagation in media with 
defects [4, 5]. Self-consistent field reasoning was used in [6] to construct a successive 
approximations procedure when the solution of the problem is refined by interaction at each 
step. The essential constraint of the proposed scheme for application of the self-consistent 
field method, which is substantially identical for all the papers listed, is the impossibil- 
ity of examining strongly correlated fields of inhomogeneities. The assumption of a uniform 
defect distribution or of a weak correlation between remote points for a random field of 
elastic properties is always taken as the keystone, here. 

The problem under consideration was investigated in [7-9] by random function theory 
methods. If it is impossible to neglect the correlation scale of the random field of inhomo- 
geneities, the application of these methods also does not yield visible results. A rigorous 
and relatively simple solution is obtained successfully only under the assumption of "strong 
isotropy" of the medium, which again eliminates the case of regularly disposed inhomogene- 
ities [7]. 

The utilization of self-consistent field reasoning in this paper permits being strained 
by just two-point correlation functions in statistical averaging, which affords the pos- 
sibility of obtaining a solution (in closed form) even for strongly correlated fields of 
inhomogeneities. A medium is considered in which the field of ellipsoidal inhomogeneities 
forms a random space lattice. For a low concentration of inclusions, when their interaction 
can be neglected, the solution obtained agreees with the Hill solution [3]. When interac- 
tion is taken into account in a first approximation, the symmetry of the tensor of the ef- 
fective elastic properties of the medium turns out to depend not only on the symmetry of the 
tensors of~the elastic properties of the matrix and the inclusions, but also on the symmetry 
of the lattice formed by the inclusions. 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 194-203, July-August, 1975. Original article submitted July 24, 1974. 

@ 1976 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N.Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

649 



i. As is known, the self-consistent field method is based on solution of the problem 
of an isolated particle in an arbitrary external field. Hence, let us turn initially to a 
consideration of a single ellipsoidal inhomogeneity in an unbounded homogeneous elastic 
medium. 

Let Lo be a constant tensor of the elastic moduli of the fundamental medium, and let 
L e + L: be the same for an ellipsoidal inhomogeneity occupying a domain V whose character- 
istic function is O(s) (s is a point of the medium with the radius vector r; iO(s)=1, for 
s E V and O(s):O for s'~V). Let ~o(~o) denote the continuous external strain (stress) 
field which would exist for Li=O. 

Let us represent the field of the displacement vector u in a medium with an inclusion 
as 

u = u o + u i ,  u i (s) = - -  ~ V U  (s' ,  s) �9 L o �9 p (s') 0 (s') dV',  (i.i) 

where uo is the displacement corresponding to the external field, u: is a perturbation caused 
by the inhomogeneity, U(s', s) is the Green's tensor of the fundamental medium, B(s) can be 
treated as the density of dislocation moments induced by the external field in the domain V 
by using the results of continual dislocation theory [i0], which simulate the inhomogeneity, 
and the log denotes convolution of the tensors with respect to two subscripts. 

The selection of the solution in the form (i.i) automatically satisfies the conditions 
at infinity. Applying the operator v.(L0.v) to the vector field u and using the properties 
of the Green's tensor, we obtain 

V" (Lo" V u) ---- V" (Lo" ltt0). (1.2) 

Hence, if ~=--G0.L 1. VU;(G0=L~t), then the vector u (i.i) is a solution of the problem of an 
ellipsoidal inhomogeneity in an unbounded elastic anisotropic medium.* Substituting (1.2) 
into (i.i) for u~ and then taking the operator def (the symmetrized gradient) of both sides, 
we arrive at an equation for the field tensor s~=defu~: 

8 l ( r )  + j~ K ( R ) .  L ~ .  e~ (r')  0 ( r ' )  dV' = - -  J ' K ( R ) .  L ~ .  ~o (r')  0 (r')  dV'. (1.3) 

The components of the tensor K (R) are K~jht(R) =-- [VkVzU~j(R)](~n)(jz), R=r'--r (the parentheses 
indicate symmetrization with respect to the corresponding subscripts). 

The kernel K(R) of the integral operator in (1.3) is expressed in terms of the second 
derivatives of the Green's tensor U. On continuous tensor-functions �9 such that 

I K ( R ) . O ( r ' ) d V ' ~ v z  
IRI>I 

this operator can be defined by the following formula [ii, 12]: 

yK( r ' - - r ) -  O(r ' )dV'=jK(C-- i~  - r )  -O(C-i~)lC-ildV~-}-A.O(r),  ~=Cr ' ,  IC - i ]=de tC  -i.  (1.4) 

Here C is the tensor of an affine transformation which takes the region V over into a unit 
sphere. The constant tensor A equals 

I 
A = I (c-'k)dr, (1.5) 

(PO 

where K(k) is a Fourier transformation of the kernel K(R), and F i is the surface of a unit 

The tensor ~ is defined to the accuracy of the component 90. for which v (L0 po)=0 �9 Treating 
as a dislocation moment density together with the conditions e~(L0~Lt).o for s e V and 

e--L0.o for ~ ~ V yields u0--0 
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sphere in k space. The integral in the right side of (1.4) is understood in the Cauchy 
principal-value sense. 

Treating the vector potential u, as a displacement from some dislocation moments dis- 
tribution permits determination of the operator with kernel K(R) on constant bivalent ten- 
sors ~o. 

In fact, the integral which diverges formally for R =0 and R § ~ (R : iRl) 

S K (a). r = - -  d+: S v u  ( R ) .  a, odV' (1.6) 

can be given meaning by considering it as the expression for the total strain of the.~edium 
when a dislocation moments field of density ~ = G0 ~ 0 is present therein. Such a dislocation 
moments distribution causes a strain, whose "plastic" part agrees with the symmetric part of 
the tensor ~ [i0, 13]. If the strain is not constrained at infinity (this case will inter- 
est us later), then internal stresses in the medium will hence be lacking and the total 
strain agrees with the "plastic" strain. This affords the possibility of defining regular- 
ization of the integral (1.6) by the formula 

S K (R) �9 ~ o d V  : Oo " ~o" ( 1 . 7 )  

Equation (1.4) has been obtained in [12], where the following theorem about polynomial 
conservativeness was used for the proof. If the external field e0 is a polynomial of degree 
m in the neighborhood of an ellipsoidal inclusion, then the field e within the inclusion 
is also a polynomial of degree m. in particular, if the field ~0 is homogeneous (constant), 
then the field el is also homogeneous and has the form [12] 

el----A'L:'eo; A = ~  A - [ A + A . L : A ] - : . A ,  ( 1 . s )  

where the tensor A is defined by (1.5). 

2. Now let us consider a random (homogeneous and ergodic)field of e!lipsoidal inhomo- 
geneities in an infinite homogeneous elastic medium. Let @~) be the characteristic function 
of the domain V occupied by inclusions of some specific realization. Analogously to the 
above, let us seek the solution in the form (i.i), where u: is the perturbation caused by 
the presence of the inhomogeneities. Then we obtain an equation for the tensor field 8t 
~efu~ which agrees with (1.3) in form, where @(~) is understood to be the characteristic 
function of the domain V occupied by the inclusions. The tensor L: now depends on the point 
s, since it will be different for different inclusions in the general case. As has been 
remarked in [12], (1.3) is an equation for e: within the domain V. 

The solution is continued uniquely in the domain V (the complement of V in the whole 
space) for known ~within V. For the field ~2 within V we have 

0 (S) el(S) -i-~ K ( s t ,  8) �9 Ll(s '  ) . e:(s')@(s')@(s)dV' --]K(s',s). L:(s')8o(s')O(s')@(s)dV' (2 .1)  

which is the staring point for the construction of the solution of the problem, the mean 
with respect to the ensemble of realizations of the random field of inclusions. We obtain 
such a solution within the framework of the self-consistent field approximation. This means 
that each of the inclusions of any specific realization will be considered isolated in some 
equivalent external field ~,comprised of an external field e0, later assumed homogeneous, 
and the field induced by the surrounding inclusions. 

Let us note that the field e need not be selected as homogeneous. If the concentration 
of inclusions is small, so that the field from all the surrounding inhomogeneities varies 
insignificantly within the volume occupied by a typical inclusion, then ~ carl be considered 
a constant tensor. Accepting this assumption, we obtain on the basis of (1.8) that within 
any inclusion the field e: has the form 

e : = A - L : . e ,  ( 2 .2 )  
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within the framework of the self-consistent field approximation, where h and L: are random 
tensors. 

We obtain the equation for the field ~ by substituting (2.2) into (2.1) and averaging 
the result over the ensemble of realizations of the random field of inclusions 

[<0 (s) A (s) .  L 1 (s)> q- S K (s', s ) .  <L 1 (s') .  A (s') .  L 1 (s')•  

x @ (s') (9 (s)> dV'] �9 "e = - -  ~ K (s', s ) .  <L, (s') @ (s') 0 (s)> dV ' . eo .  (2.3) 

The angular brackets denote the mentioned averaging operation. To construct the means 
in (2.3), a specific model of the random field of inclusions in the medium must be given. 
Let us examine a possible model. Let the centers of the inclusions occupy the nodes of the 
random spatial lattice. Let us assign the triple of random vectors a I, a~, a 3 to an elementary 
cell (Bravais cell) of this lattice. Let us connect the set of lattice nodes to the set 
of triples of integer subscripts (k, 5, m) by defining the vector r~im of a node by the 
relationship 

Ihl Ih Iml 

�9 ~,m ---- sign k Z a~ 0 q- s i g n / E  a(z 0 q- s i g n m  E =s"(O 
i = i  ~=i i= i  

(k, l ,  ra = -- 0% . . . .  --i, O,i, . . . ,  +~). 
(2.4) 

Here all the vectors a~ ) are independent random variables with known distribution functions 
~j(]=1,2,3). The lattice nodes are the centers of inclusions of ellipsoidal shape with random 
values of the semiaxes c~, c2, c3 and random orientation which the orthogonal tensor Q 
defines for a fixed basis. The elastic properties of the inclusions are given by the random 
tensor L,. The combined distribution functions of all the quantities mentioned will be 
considered known. The means in (2.3) must be constructed for the described field of in- 
clusions:* 

vF(1)(s', s )=  < Ll(s'). A(s').Ll(s')O(s')6)(s) ~> ; 
W(~)(s ", s ) =  ~ Ll(s')@(s')O(s ) ~ ;  ~F(3) --  ~ A(s) .Ll(s)@(s ) > .  (2.5) 

Following the method used in [15], let us temporarily consider the point s' a random, 
' for the uniformly distributed point in the whole space. Let us introduce the notation s, 

random point. Because of the ergodicity the means (2.5) with respect to the ensemble of 
realizations of the random field of inclusions equal the means with respect to all possible 
positions of the point s$ if O(s) is a fixed typical realization of this field. Let @hpm 
be the characteristic function of an inclusion whose center is at a point with a radius- 

vector ~pm- 

Then 

0 (s) = ~ Ohpm (s). (2 .6 )  
h,p,m=--~ 

It is admissible to consider that the ellipsoid, within which is the point s~, has the 
subscripts 000. The dimensions and orientation of the ellipsoid @000 are random variables 
whose distribution agrees with the ensembles. Let us consider the mean ~(1)(s',s) in (2.5). 
Substituting (2.6) into the expression for ~(1)(s', ~ , we obtain 

oc 

h,p,m=--oo h,p,m=--oo (2.7) 

The construction of such means is one of the problems considered in geometric probability 
theory. The fundamental principles are elucidated in [14]. A number of results for the 
one-dimensional case have been obtained in [15]. 
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(The vector R connecting the points s' and s is fixed.) 

Let us consider the component corresponding to k = p = m = 0 in (2.7) 

•(i) ooo= (0ooo (s:)"Oooo (s)L1 (s ; ) .  A (si)" L i (s:)}, (2.8) 

~,r(1) ' when s T and s turn where ~000 is the mean with respect to all positions of the point s, , 
out to be within one inclusion. The mean (2.8) can be represented as 

~kr(~)O / /  . \ \  = \ . L  i " k �9 Li V-~ J (R. q ,  Q, %, Q ) / ,  (2.9) 

where J ( R , c  i, c~,c~, Q) is the volume within the ellipsoidal domain occupied by the inclusion 
(with semiaxes cl, c2, cs and orientation Q) Incidence of the point s' within this volume 
assures incidence of the point s in the same ellipsoid; Vo is the mean volume per inclusion. 
By the affine transformation C(~=CR), carrying the given ellipsoid over into a unit sphere, 
the function J(R, Cl, C2, C3,Q) is taken into a spherically symmetric function 

J(C-~ ~)=- J'(l~l). (2.  I0) 

It is evident that 

J(O, c .  c~, c~,q ) = v .  

where vc = (4= /3) ei, Q,c 3 is the volume of an ellipsoid with the semiaxes c~, c2, c3. 

Now let us find the remaining components in the sum (2.7). Let ~ denote the domain 
representing the ellipsoid @hvm, whose center is at the point s. Let r' be the radius-vector 

, ,r "~ s) is represented of the point s, relative to the center of the ellipsoid O000 . Then xk~m(s, 
as 

kvm = "<L i A / ( 2 . 1 1 )  

where r' + R is the radius-vector of the center of the domain Q; and ?~pm is the distribution 
function of the random vector rhpm. Let the variance of this random variable be large com- 
pared to the size of the inhomogeneity so that Yhpm(r)varies insignificantly within the limits 
of the domain occupied by a typical inclusion. Applying the theorem of the mean, we obtain 

.I 3?kpm (r) d V  ~_ Ykpm (r' + R) uc. (2 .12)  

For a small concentration of inclusions p = <re>/ Vo and smallness of the variance as compared 
with the spacing between inclusions, it can be considered that* 

(2.13) 

Substituting (2.12). (2.13) in (2.11), we have 

W(~)m (R) -- Yhpm (R) p <L~. A .  L v~> 1 
(2.14) 

The assumptions (2.12) and (2.13) are also equivalent to the replacement of the inclusions 
by some effective dipoles. 
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Taking account of (2.14), the expression for the mean ~FO)(s t, s) in (2.7) becomes 

where 
W (~) (R) = V(o~o~ (R) + pS (R) <I,~. A. L~vc>, 

r 
S(n) = ~ W~m(R). 

k, p,~r~=--oo 

(2.15) 

(2.16) 

The prime on the summation sign denotes omission of the component k = p = m = 0. Since the 
random vector rhpm is the sum of independent random variables, the characteristic function 
Tkpm(k) of the vector is 

V~p~ (k) = ~[ht (sign kk) ~Pl(sign pk) ~,~1 (sign ink), 

where ~i(k) is the characteristic function of the random vector a+ Passing to the distribu- 
tion function and substituting the result into (2.16), we obtain after taking the sum 

l._j__ [ S (k)e (-ikR) dVh, S (R) = (2~p L 

3 { l - - ~  (k)~i(--k) -- I + (2n)a ~ (k). (2 .17)  
i = i  

Here 6(k) is the delta function concentrated at the point k=0. 

In particular, if each of the vectors a of the Bravais cell corresponding to the lattice 
of inhomogeneities is distributed normally with the mathematical expectation ai and identical 
variance a for all the vectors, then S(k) becomes 

S (k) = [1 --  exp (--o2k~)] IX t --  2exp --  ~ o~k ~ cos (aik) + exp (-- (y~k 2) --  
i = i  

We obtain analogously for the means W(2)(s',s) and R t(a) in (2.5) 

Here 

~F (z) (R) = ,,~(z) xooo (R) + pS (R) (re LI>. 

1 
~'(o~)o(n) = <I,~ Vo y (R, % % % Q)>; 

~ir(3) Vc 
= <A.L I ~0). 

Taking account of (2.15) and (2.19)-(2.21), Eq. 
comes 

[W(8) + f K (R). ~Fo(~)o (R) dV + p y K (R) S (R) dV. (L~. A. L~ v=~]. 

�9 e = - -  [ S K (R). W~)0(R) dV + p  S K (R) S (R) dV. (L I re>] "co. 

I + ~ 8  (k). (2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.3) for the equivalent field ~ be- 

(2.22) 

Let us evaluate the integrals which enter here. From (2.9) and (2.10) we will have 

t j ,  
K (R)-~io~o (R) dV = < Vo y K (C - i  ~) (l~i) IC-~I dV~. L~. A" L~>. 
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Using the regularization (1.4), we arrive at the relationship 

~K(R) (~) = ~A-LI.A.L1); ~ooo(R) dV < o (2.23) 

analogously, 

vr LI>. J'K (R)Wo(~)o(R) dV = < ~oo A.  (2.24) 

In evaluating the integral ~K(R)S(R)dV let us note that the inverse transform of the Fourier 
member with the f-function in the expression for S(k) yields a constant component~ Using 
the regularization (1.6) and the Parseval equality, we obtain 

j" K (R) S (R) dV =: ~ (H + Go), (2.25) 

(2.26) 

and the integral in (2.26) is understood in the sense of the Cauchy principal value. To 
the accuracy of the symmetrization and commutation operations, the transformation of the 
Fourier-kernel K(R) equals [kL0k]-1@kQk (Q denotes the tensor product). Hence, the 
symmetry group of the tensor H is the intersection of the symmetry group of the elastic 
modulus tensor of the fundamental medium Lo and the symmetry group of the function S~). 

As follows from (2.17), this latter agrees with the symmetry group of the spatial lat- 
tice which is the mathematical expectation of the random lattice of inclusions being con- 
sidered. Let the fundamental medium (matrix) be isotropic, and let the mathematical expec- 
tation of the lattice of inclusions be a simple cubic lattice. Then the components of the 
tensor H(2.26)become 

(2.27) 

i (8~Ssz + 81~Szj) is where X and ~ are the Lamd parameters of the fundamental medium, liTkz =7 
a unit quadrivalent tensor, B is a quadrivalent tensor possessing the symmetries of the 
cubic lattice, 

~o, fl. 1~ 

The integrals are here understood in the principal-value sense. 
and ~i are written as absolutely convergent integrals 

B---- -~ ai,, 
i=i 

denotes quadruple tensor multiplication of a vector by itself. 

in (2~ are defined by the equalities 

1 IF__?..o [k_!.~ ] I ~o = ~ ~ s (k) dV; ~, --  -C L 3 ~ k~ S (k) d r  + ~o ; i ~ =  ~ ~  5~.  

For s(k) in (2.!8), 

The coefficients 

the Bo, 
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•  __~2 z 2 )/ --I dzldz~dz3; 

•  -- z 2~ - - t  dzld%dz 3 4-T  13~ ~2 ] �9 

= 4 ::: + 

X 

Now substituting (2.21), (2.23), (2.24), (2.25) into (2.22) and solving the equation ob- 
tained for the tensor e , we will have 

6"--D'eo' (2.28) 

where 

[I '~/'v~ A L \ - '  /v~ .L~ .A.L~>] - i  D----| - - v \ V ~  ~ �9 ~ /  . \ v o ( H + G o )  

, ,  ~ - ' , / %  (H + Go).La~]" X [I --  p ~ - ~ . ~ /  " \Vo 

X 

(2.29) 

Here we used the equality A - L I + A . L x . A .  LI=--A.L~, which is verified by using (1.7). 

In combination with (2.2), the relationship (2.28) permits determination of the strain 
within an arbitrary inclusion within the framework of the self-consistent field approxima- 
tion, upon application of a homogeneous external field e0 to a composite material. 

3. Let (e> be the mean strain of a medium with respect to the ensemble of realization 
of a random field of inclusions, upon application of a random stress field ~. The tensor 
of the effective elastic pliability is determined by the relationship 

<e>:G e .a o. (3. I) 

Within the framework of the self-consistent field approximation, we find the expression 
for the mean strain of the medium from (I.I), (1.3), and (2.2) by using the averaging and 
regularization procedures (1.7) described above 

<e> = eo + ( e l>  = eo - -  S H (R) .  ( (L  1 �9 A -  LI" e'q-  L 1" eo) X 

t ~. /v~  (LI"A'LI"~ ' L~.eo)/~ • 0 (r')> d V '  = eo ~ o "  \ ~  ~ �9 

Substituting (2.28) here with the equality e0=G0o0 taken into account and comparing 
the result (3.1), we arrive at the following expression for the tensor of the effective 
elastic pliability Ge: 

Ge =Go -- Go" < LI 'A 'LI"D+L1 > "Go, 

where the tensor D has the form (2.29). 

Let all the inclusions have the same size, orientation, and elastic properties. Limit- 
ing ourselves to the first three members of the expansion of G in a series in the concentra- 
tion of inclusions p, we obtain 
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Ge --Go --  pGo. (L~. A. L, +L~). Go -- p2Go" L~. A. A-~(tt +Go) (Lt. A. L 1 -- L1). Go, (3 .2)  

where the tensor H is defined by the relationship (2.26). 

The third member in (3.2) can be neglected for a small concentration of inhomogeneities, 
which corresponds to no interaction between the inclusions (~=e0). Hence, to the accuracy of 
the notation, the expression for G e agrees with the Hill result obtained in [3]. Interaction 
between the defects is taken into account in a first approximation by a member of order p2 
in the expression (3.2) for G e. The symmetry of this member depends on the syrmnetry of the 
space lattice formed by the centers of the inhomogeneities. 

In conclusion, let us note that the application of the scheme developed here is apparent- 
ly valid for not too high values of the concentration of inhomogeneities. The result can be 
refined by approximation of the equivalent field by a polynomial e whose coefficients are found 
from the self-consistency condition and the minimum potential energy condition of the system. 
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